
Fitting Proxy Functions for Conditional Tail 
Expectation: Comparison of Methods 

Overview

Proxy function methods have been used in the insurance industry for nearly a decade, primarily in 
nested-stochastic applications requiring a calculation of a distribution mean, such as the projection 
of an option value defined as a risk-neutral average of discounted cash flows.

Previous research notes (Clayton et al., 2013; Clayton and Morrison, 2016) have shown the 
extension of these methods to projecting dynamic hedges. Other research (Morrison, Tadrowski, 
and Turnbull, 2013; Clayton et al., 2016) has described a method of constructing proxy functions for 
Conditional Tail Expectation (CTE), used in particular to project run-off reserve and 
capital requirements. 

However, all of the above applications have used some variant of Ordinary Least Squares (OLS) 
regression for proxy function fitting, which requires unbiased (or nearly unbiased) estimates of the 
distributional statistic of interest as an input. For a fit to a mean, the process of constructing 
unbiased estimates is straightforward, but for “tail statistics” such as a CTE, finding an unbiased 
estimator in general can be difficult or impossible.

This note details alternative methods for fitting proxy functions to CTE, employing quantile 
regression in combination with OLS among other techniques. We compare methods according to 
quality of fit for an example portfolio of variable annuities.
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1. Introduction

We consider the general problem of fitting a proxy model to describe the Conditional Tail Expectation (CTE) of a probability 
distribution – that is, expected value of a random variable given that it exceeds a given threshold – conditional on the values of 
some other given variables. A typical application might be projecting forward a prospective capital requirement supporting a book 
of insurance business under various economic scenarios over the coming year; the required capital in many cases is defined as a 
CTE(70) or CTE(90) of the present value of future deficits under a stochastic “run-off” calculation of assets and liabilities. Thus, 
projecting this capital requirement is a nested-stochastic problem, with “outer” scenarios specifying the possible evolution of 
markets over one year, and “inner” scenarios branching off to give the conditional run-off capital in each outer scenario. 

As described in Clayton et al. (2016), this is mechanically similar to the nested-stochastic problem of projecting market value 
under different economic scenarios, with the key difference being that the latter application calls for an average of discounted cash 
flows over risk-neutral inner scenarios whereas we are interested in the CTE over (typically) real-world inner scenarios. For the risk-
neutral/average version of the problem, Least Squares Monte Carlo (LSMC) has proven to be an extremely effective technique, 
greatly reducing calculation time relative to a full stochastic-on-stochastic calculation with only a minor loss of accuracy.1 The 
core insight of LSMC is that the inner statistic of interest (e.g., average over conditional risk-neutral distribution) should have a 
continuous functional relationship to the outer risk-variables (e.g., one-year economic scenarios); by crudely estimating the value 
using a reduced number of inner scenarios and then applying function-fitting techniques such as polynomial regression, we can 
approximate this functional relationship with a “proxy function.”  

In general we would expect a similar argument to hold here as well. Our aim in the present work is to examine how much of the 
LSMC methodology can be translated from the risk-neutral/average regime to the real-world/CTE one, and in particular what 
changes to the function-fitting process might be necessary or desirable. The main challenge we are confronted with is that the 
standard fitting technique, Ordinary Least Squares (OLS) regression, is only suitable for extracting the conditional mean behavior 
of a response variable given some explanatory variables. Thus, in order for OLS to be applicable, we must somehow transform our 
CTE problem into an average problem after all, for example by using inner samples to produce an unbiased (or nearly unbiased) 
estimator of the CTE. This is the first method we consider and also the method previously used in Morrison, Tadrowski, and 
Turnbull (2013) and, with some improvements, in Clayton et al. (2016).  

Alternatively, we can use other function-fitting techniques. We explore two alternative methods here: one using quantile 
regression in combination with OLS to extract the conditional quantile/CTE, and the other using quantile regression alone to fit a 
parametric distribution in the tail of the conditional distribution. 

After describing these techniques in generality, we show the results of applying them to an example portfolio of variable annuities 
with a view towards projecting reserve/capital requirements at a given future time. Here we assume a fixed scenario budget, 
measured by the total number of scenarios passed to an actuarial cash flow model, and attempt to answer the question of which 
function fitting technique makes best use of that budget to produce the highest quality proxy function fit. 

1 See Elliot (2016) or Morrison and Tadrowski (2015) for recent surveys and descriptions of the LSMC approach. 
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2. Methodology

For the remainder we will assume we have a scenario generator capable of producing samples of “outer” risk-variables, which we 
denote 𝒙𝒙, and an “inner” variable, denoted 𝑦𝑦, from the conditional distribution 𝑝𝑝(𝑦𝑦|𝒙𝒙). A practical example might involve 𝒙𝒙 
representing the yield curve and equity markets at time 1, and 𝑦𝑦 being the present value of future run-off deficits conditional on 
the given realized market. 

We assume that the ultimate metric of interest is the CTE of this distribution at some given confidence level 𝜏𝜏: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏) ≔ 𝐶𝐶𝑥𝑥[𝑦𝑦|𝑦𝑦 > 𝑞𝑞𝜏𝜏] 

where 𝑞𝑞𝜏𝜏 is the 𝜏𝜏-quantile; 𝑃𝑃[𝑦𝑦 < 𝑞𝑞𝜏𝜏|𝑥𝑥] = 𝜏𝜏. 

This value then depends only on 𝒙𝒙. In keeping with the usual LSMC approach, to estimate the functional relationship between the 
CTE and 𝒙𝒙, we generate a set of fitting stresses 𝒙𝒙𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁, and assume we can produce samples from the appropriate 
corresponding conditional distributions. 

2.1  Method 1 – Ordinary Least Squares 

This approach mimics the usual methodology for fitting a proxy function to a mean. For each outer fitting stress, we generate 
some number 𝑀𝑀 of inner samples 𝑦𝑦1, … , 𝑦𝑦𝑀𝑀  from the distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥) and then use these to construct an estimator for the 
distribution CTE. If the estimate is unbiased – meaning the expected value of the estimator over its distribution is the true CTE – 
then OLS regression can extract the functional relationship between the true CTE and the underlying risk factors. In effect, this 
transforms the problem back to that of fitting a proxy function to a mean of a distribution (now the distribution of the CTE 
estimator itself) given a single sample in each fitting stress. The hard work then becomes finding the right estimator. 

A reasonable guess would be to use the in-sample CTE as an estimator: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏)� =
1

𝑀𝑀(1 − 𝜏𝜏)
� 𝑦𝑦(𝑗𝑗)

𝑀𝑀

𝑗𝑗=𝑀𝑀𝜏𝜏+1

 

where 𝑦𝑦(𝑗𝑗) denotes the 𝑗𝑗th order statistic of the sample; however, as shown in Manistre and Hancock (2005), this estimator is in 
general negatively biased, by an amount that depends on the particular distribution and size of the sample. As a result, for small 
inner sample sizes, the fitted proxy function will exhibit large systematic error in the final validations.  

On the other hand, larger sample sizes 𝑀𝑀 will naturally come at the cost of reducing the number of available fitting stresses 𝑁𝑁 

that can be evaluated, assuming a constant overall scenario budget, 𝑁𝑁 ⋅ 𝑀𝑀. This can also result in a lower quality proxy fit. So for 
this estimator, a balance must be found between running enough inner samples to reduce the size of the estimator bias while still 
running enough fitting stresses to fill out the risk factor space. 

For example, Morrison, Tadrowski, and Turnbull (2013) compared fitting results for CTE(70) using 10, 100, and 1,000 inner 
scenarios in each of 10,000, 1,000, and 100 fitting points, respectively, and concluded the 1,000 outer x 100 inner scenario 
allocation gave the best balance between bias and variance of the estimator. 

An improvement is to use a “bias-corrected” estimator derived from the exact bootstrap method as described in Kim and Hardy 
(2007): 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏)� = 𝑐𝑐𝑇𝑇(2𝐼𝐼 − 𝑤𝑤𝑇𝑇)𝑦𝑦:𝑀𝑀

where 𝑦𝑦:𝑀𝑀 = �𝑦𝑦(1), … , 𝑦𝑦(𝑀𝑀)�
𝑇𝑇

is the vector of rank-order statistics of the samples, 𝑤𝑤 is the weight matrix:

𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑗𝑗 �𝑀𝑀𝑗𝑗 � �𝐵𝐵 �
𝑖𝑖
𝑀𝑀

; 𝑗𝑗,𝑀𝑀 − 𝑗𝑗 + 1� − 𝐵𝐵 �
𝑖𝑖 − 1
𝑀𝑀

; 𝑗𝑗,𝑀𝑀 − 𝑗𝑗 + 1�� 

with 𝐵𝐵(𝑥𝑥; 𝑎𝑎, 𝑏𝑏) ≔ ∫ 𝑡𝑡𝑎𝑎−1(1 − 𝑡𝑡)𝑏𝑏−1𝑑𝑑𝑡𝑡𝑥𝑥
0  being the incomplete beta function, and 

𝑐𝑐 =
1

𝑀𝑀(1 − 𝜏𝜏)
(0, … ,0,1, … ,1)𝑇𝑇 

has zeroes in the first 𝑀𝑀𝜏𝜏 elements. 



 5 FEBRUARY 2018 FITTING PROXY FUNCTIONS FOR CONDITIONAL TAIL EXPECTATION 

This can allow nearly unbiased estimators for the CTE to be constructed even from small samples, as in Clayton et al. (2016), 
which estimated the CTE(99) from sample sizes on the order of 𝑀𝑀  = 50. 

2.2  Method 2 – Quantile Regression Plus OLS 

Quantile regression is an alternative method of estimating the relationship between a response variable 𝑦𝑦 and a set of predictors 
𝒙𝒙, when what is ultimately desired is a particular quantile of the conditional distribution.2 In contrast to OLS, which estimates the 
conditional mean by minimizing the sum of squared residuals, quantile regression works by minimizing the objective  

�(𝑦𝑦𝑖𝑖 − 𝒙𝒙𝑖𝑖𝛃𝛃)�𝜏𝜏 − 𝐼𝐼(𝑦𝑦𝑖𝑖−𝒙𝒙𝑖𝑖𝜷𝜷<0)�
𝑁𝑁

𝑖𝑖=1

as a function of the coefficients 𝜷𝜷, where 𝜏𝜏 is the quantile level of interest. This objective function is motivated by the observation 
that the 𝜏𝜏th quantile 𝑞𝑞𝜏𝜏 of the distribution of any random variable 𝑌𝑌 minimizes the value  

𝐶𝐶�(𝑌𝑌 − 𝑢𝑢)�𝜏𝜏 − 𝐼𝐼(𝑌𝑌−𝑢𝑢<0)�� 

= (𝜏𝜏 − 1)� (𝑦𝑦 − 𝑢𝑢)𝑑𝑑𝐹𝐹𝑌𝑌(𝑦𝑦) 
𝑢𝑢

−∞
+ 𝜏𝜏 � (𝑦𝑦 − 𝑢𝑢)𝑑𝑑𝐹𝐹𝑌𝑌(𝑦𝑦)

∞ 

𝑢𝑢

(Differentiating with respect to 𝑢𝑢 and setting equal to 0 shows the minimum occurs at 𝑢𝑢0 if and only if 𝐹𝐹𝑌𝑌(𝑢𝑢0) = 𝜏𝜏, i.e., 𝑢𝑢0 = 𝑞𝑞𝜏𝜏.) 

Given a set of fitting stresses and samples from the inner conditional distributions, we can then use quantile regression to extract 
the conditional quantiles, such as the 70th or 90th percentile. Note that the above minimization problem is not as simple as that of 
OLS (which reduces to a system of linear equations); instead, the problem is typically reformulated as a linear program in terms of 
the positive and negative parts of the 𝛽𝛽 coefficients: 

𝛽𝛽+ = max(𝛽𝛽, 0) ,𝛽𝛽− = −min (𝛽𝛽, 0) 

for which simplex and interior point solution methods are available (Koenker, 2005, pp. 181-190). 

These conditional quantiles can be useful statistics in themselves, as in Morrison (2017), which considered the problem of 
estimating the conditional 99.5th percentile for the purpose of projecting 1-year VaR. For our purpose of projecting CTE, however, 
the quantiles can be an intermediate step, since by definition the CTE(𝜏𝜏) is the mean of the distribution conditional on exceeding 
the 𝜏𝜏th quantile. Therefore, considering only those samples that exceed the estimated quantile, we can apply OLS regression to 
extract the conditional CTE.  

To summarize, the steps to fitting a proxy for the CTE using this method are: 

1. For 𝑖𝑖 = 1, … ,𝑁𝑁, generate fitting stresses 𝒙𝒙𝑖𝑖 and individual samples 𝑦𝑦𝑖𝑖  from the inner conditional distributions 𝑝𝑝(𝑦𝑦|𝒙𝒙)

2. Use quantile regression to fit coefficients of the quantile model 𝑞𝑞𝜏𝜏(𝑦𝑦|𝒙𝒙) = 𝒙𝒙′𝜷𝜷𝑸𝑸

3. Select only those samples for which the inner sample exceeds the predicted quantile, that is, where 𝑦𝑦𝑖𝑖 > 𝒙𝒙𝑖𝑖′𝜷𝜷𝑸𝑸. Suppose
these samples have indices 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛. Assuming step 2 has successfully fit the quantile model, we should have 𝑛𝑛
approximately equal to 𝑁𝑁(1 − 𝜏𝜏).

4. Perform Ordinary Least Squares regression to fit the model 𝑦𝑦 ~ 𝒙𝒙′𝜷𝜷𝑪𝑪, only on the selected points
(𝒙𝒙𝑖𝑖1 ,𝑦𝑦𝑖𝑖1), … , (𝒙𝒙𝑖𝑖𝑛𝑛 ,𝑦𝑦𝑖𝑖𝑛𝑛). This gives an estimate of the mean of the response distribution conditional on exceeding the
given quantile, that is, the CTE.

In contrast to the “pure” OLS method described in the previous section, this approach can use as little as one inner sample per 
fitting stress, no matter what CTE level is desired. However, it comes at the cost of having to do two regressions – one for the 
quantile and one for the CTE – introducing multiple possible sources of error in the process. In addition, the quantile regression 
step can be computationally expensive, depending on the complexity of the model (number of coefficients) and number of fitting 
stresses. 

2 See Koenker (2005) for a complete introduction. 
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2.3  Method 3 – Distribution Matching 

One final method we consider uses quantile regression alone to understand the shape of the desired distribution in the tails. In 
principle, if we had access to the quantiles 𝑞𝑞𝜏𝜏 of a distribution for all 𝜏𝜏, we could calculate the CTE at any level using Acerbi’s 
Integral Formula:3 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏) =
1

1 − 𝜏𝜏
� 𝑞𝑞𝛽𝛽𝑑𝑑𝛽𝛽
1

𝜏𝜏
 

In practice, however, we will never have this much information (which amounts to the full cumulative distribution function of the 
response variable). Instead, we consider repeating the quantile regression process a small number of times at different quantile 
levels and matching these to a given parametric distribution, for which the CTE can be calculated either analytically or numerically. 

For example, to estimate the CTE(70) of the distribution, we might first estimate the 70th and 90th percentiles 𝑞𝑞0.7 and 𝑞𝑞0.9 by 
means of two quantile regression fits with 𝜏𝜏 = 0.7 and 𝜏𝜏 = 0.9. Then, assuming the distribution is approximately normal in this 
tail region, we could find parameters 𝜇𝜇,𝜎𝜎 of a normal distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2) with quantiles matching our given estimates. Writing 
the normal distribution in terms of a standard normal variable 𝑍𝑍 as 

𝜇𝜇 + 𝜎𝜎𝑍𝑍 

makes this straightforward, since we then have two equations in the two unknown parameters: 

𝜇𝜇 + 𝜎𝜎Φ−1(0.9) = 𝑞𝑞0.9 
𝜇𝜇 + 𝜎𝜎Φ−1(0.7) = 𝑞𝑞0.7 

The 𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏) of the normal distribution for any level 𝜏𝜏 can then be calculated directly using the formula:4 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏) = 𝜇𝜇 +
𝜎𝜎

1 − 𝜏𝜏
∗

1
√2𝜋𝜋

exp �−
1
2
𝛷𝛷−1(𝜏𝜏)2� 

Similar methods would apply to other distributional assumptions, such as lognormal or generalized Pareto, as we explore in the 
next section. 

In each case, the performance of this method would rest on the quality of fit in each of the quantile regressions and the 
reasonableness of the distributional assumption in the tail. Each of these could depend sensitively on which particular quantiles 
were used in combination to estimate a given CTE level and how extreme that level was. This method also carries the additional 
expense of needing to perform multiple quantile regressions. 

3. Case Study Results

To compare performance among the different methods described in the previous section, we consider the problem of projecting 
reserve and capital requirements for a representative block of variable annuities. The block in question consists of approximately 
75,000 policies with a mixture of accumulation, withdrawal, and death benefit guarantees5 at various levels. 

At any given point in time, a distribution of present value of future deficits is defined by a 40-year run-off projection using real-
world scenarios, from which the required reserve is defined as the CTE(70) and the required capital as the CTE(90). We are 
interested in projecting these requirements forward 5 years in the future under various economic scenarios. For this example, we 
consider interest rate risk only, including the sensitivity to the initial yield curve. Specifically, we have outer stresses consisting of 
the following variables: 

• Initial yield curve, described by two principal component shocks (“PC1” and “PC2”).

• The change in the yield curve during the first 5 years, defined as a parallel movement over time (“YC_Change”).

3 Acerbi and Tasche (2002) 
4 See Hardy (2006) for a derivation. 
5 Specifically, GMAB, GMMB, and GMDB with optional GLWB and GMWB 
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• The speed of the above yield curve movement, described as the time over which the parallel movement occurs 
(“YC_Period”); if this completes before the 5 year period, the yield curve is assumed to be constant for the remaining 
time. 

These stresses, although constrained to fairly simple yield curve movements, allow a wide range of possible yield curve paths of 
the kind required for stress testing or capital planning purposes. The chart below illustrates one such possible path: 

Figure 1: Possible yield curve evolution  

 

 

 

Ordinarily, to compute reserve and capital requirements at the end of such a path, we would recalibrate an inner real-world 
scenario generator and run a large number – on the order of 10,000 – of conditional scenarios. We would then calculate future 
cash flows and the CTE of the aggregated results. If we then required ~100 planning scenarios, we would need approximately 1 
million total scenarios to be passed to the actuarial cash flow model. 

Instead, for this example, we assume a fixed total scenario budget of 100,000 scenarios, to be allocated differently for each proxy 
fitting method. 

To validate the performance of the proxy functions, we compute full nested stochastic results using 3,000 inner scenarios for a set 
of 100 validation points. These points are divided in two categories: multivariate validation points, chosen by Sobol sampling from 
the 4-dimensional risk factor space described above, and univariate validation points, constructed by fixing all but one variable in 
turn at a chosen value (e.g., median) and allowing the remaining risk factor vary. A selection of the validation points is shown in 
the charts below: 

Figure 2: Multivariate Validation Points 
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Figure 3: Univariate Validation Points 

 

 

3.1  Method 1 – Ordinary Least Squares 
 

We consider two different allocations of the total 100,000 fitting scenarios. First, we use the scenarios to construct 1,000 outer 
fitting points with 100 inner samples each and fit proxy functions to the bias-corrected estimates of the CTE(70) and CTE(90) 
using OLS. The charts below show proxy function value vs. validation value; perfect agreement is indicated by the line 𝑦𝑦 = 𝑥𝑥. 

Figure 4: Proxy vs. Validation for 1,000x100 scenario allocation OLS 

 

 

The proxy functions show some deviation from the validation values, particularly for the more extreme values. This is likely the 
result of the reduced number of fitting points (1000) and the subsequent inability to fully cover the 4-dimensional risk factor 
space. Also, the fits show some systematic negative bias, indicating that the proxy function is consistently underestimating the 
true CTE by a small amount. 

Second, we consider a scenario allocation with 10,000 outer fitting points with 10 inner scenarios each.  

-2

-1

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3

Validation Points -- PC2 vs. PC1

0

1

2

3

4

5

6

7

8

9

10

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

Validation Points -- YC_Period vs. YC_Change

 -

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 -  0.5  1.0  1.5  2.0  2.5  3.0  3.5

Bi
lli

on
s

Billions

Proxy vs. Validation - CTE70

 -

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

 -  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5

Bi
lli

on
s

Billions

Proxy vs. Validation - CTE90



  

 9 FEBRUARY 2018 FITTING PROXY FUNCTIONS FOR CONDITIONAL TAIL EXPECTATION 

Figure 5: Proxy vs. Validation for 10,000x10 scenario allocation OLS 

 

The deviation at the extreme values has improved relative to the previous fits, with a slight increase in the amount of systematic 
bias in the proxy function. With the in-sample CTE estimator, ordinarily a sample size this small (10 scenarios) would result in a 
very biased function, particularly for the CTE(90) proxy; however, with the bias correction described in the previous section, we are 
able to keep the bias relatively small. 

 

 

3.2  Method 2 – Quantile Regression Plus OLS 
 

Here, we use quantile regression to fit the 70th and 90th conditional quantile of the distribution and then OLS on the residuals to fit 
the CTE. Since the extra regression step introduces an additional potential source of error, we validate both the quantile and CTE 
proxy functions to show the quality of fit at each stage. 

Figure 6: Proxy vs. Validation for Quantile Regression fits 
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Figure 7: Proxy vs. Validation for CTE using Quantile Regression plus OLS 

 

 

To further investigate the behavior of the proxy functions, we consider the univariate validation points in isolation. This illustrates 
the overall behavior of the quantile and CTE proxies as functions of individual risk factors; shown here are dependencies with 
respect to the yield curve change and interest rate PC1 shock. 

Figure 8: Proxy and Validation vs. yield curve change risk factor 
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Figure 9: Proxy and Validation vs. yield curve PC1 risk factor 

 

 

Overall we see very close agreement between the proxy function and validation values, and a consistent overall functional 
relationship between proxies and risk factors. 

 

3.3  Method 3 – Distribution Matching 
 

First, we fit a Gaussian distribution to the estimated 70th and 90th percentiles as described in the previous section and use the 
analytical formula for the Gaussian CTE to estimate the CTE(70) and CTE(90). 

Figure 10: Proxy vs. Validation for Gaussian distribution fit to 70th and 90th percentiles 

 

 

Both charts show the proxy function underestimating the relevant statistic, particularly for more extreme values. This indicates the 
Gaussian approximation may break down due to the distribution becoming more fat-tailed in the extreme stresses. 
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As an alternative, we consider fitting a lognormal distribution at the same estimated quantiles as above, now using the analytical 
formula for the lognormal CTE. 

Figure 11: Proxy vs. Validation for lognormal distribution fit to 70th and 90th percentiles 

 

The quality of fit is improved at the higher regions, indicating we have captured the shape of the tail more accurately for those 
stresses. However, it has come at the cost of an overestimate for many of the other stresses, suggesting the shape of the tail is less 
fat than lognormal for those stresses. 

Finally, we consider fitting a 3-parameter family using the generalized Pareto distribution. In order to solve for the three 
parameters, we require another estimated quantile, for which we use a quantile regression fit to the 80th percentile, constructed in 
the same manner as the 70th and 90th. 

Figure 12: Proxy vs. Validation for generalized Pareto distribution fit to 70th, 80th, and 90th percentiles

 

Here, the quality of fit is generally poor, indicating either that the Pareto distribution assumption is not reliable on this region of 
the tail or that the fitting process is unstable, perhaps due to the many sources of error. 
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4.  Discussion 

In principle we can compare results of the various fitting methods in many ways. The charts of the previous section already 
demonstrate two possible types of error that can be present in a proxy function fit: bias owing to some systematic error present in 
the fitting process (a biased estimator, omitted explanatory variable, or incorrect distributional assumption), and variance 
indicating a failure of the proxy function to converge to the true functional relationship (too few fitting points, too many 
coefficients, error accumulated over multiple regressions). 

To include both types of error simultaneously, for each of the fits to the CTE(70) and CTE(90) above, we calculate proxy function 
error on a root mean square (RMS) basis over the set of multivariate validation points: 

𝑅𝑅𝑀𝑀𝑅𝑅 = �
1
𝑛𝑛
�(𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑦𝑦𝑖𝑖 − 𝑉𝑉𝑎𝑎𝑉𝑉𝑖𝑖𝑑𝑑𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑛𝑛𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

�
1/2

 

which has the appealing property 

𝑅𝑅𝑀𝑀𝑅𝑅2 = 𝐵𝐵𝑖𝑖𝑎𝑎𝑠𝑠2 + 𝑉𝑉𝑎𝑎𝑃𝑃𝑖𝑖𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒2 

We also compare methods according to average absolute error: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏𝑠𝑠𝑃𝑃𝑉𝑉𝑢𝑢𝑡𝑡𝑒𝑒𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝑛𝑛
�|𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑦𝑦𝑖𝑖 − 𝑉𝑉𝑎𝑎𝑉𝑉𝑖𝑖𝑑𝑑𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑛𝑛𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

Finally, to put the above error measures on a meaningful scale, we express both relative to a base value, taken to be the value of 
the relevant statistic (either CTE(70) or CTE(90)) at the median validation point, that is, center of the risk factor space in all 
dimensions. 

The results for the CTE(70) proxy fits (ranked by RMS error) are summarized in the chart and table below: 

 

Figure 13: Proxy method errors – CTE(70) 
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Method RMS Error (% of Base) Avg. Abs. Error (% of Base) 
Quantile Regression + OLS 7.0% 4.6% 
Distribution match (lognormal) 9.7% 8.3% 
Distribution match (Gaussian) 11.7% 6.7% 
OLS (10,000x10 allocation) 16.5% 15.4% 
OLS (1,000x100 allocation) 16.7% 14.9% 
Distribution match (Pareto) 52.7% 31.2% 

 

The results for the CTE(90) proxy fits are summarized below: 

Figure 14: Proxy method errors – CTE(90) 
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Quantile Regression + OLS 10.2% 7.5% 
OLS (1,000x100 allocation) 16.4% 14.3% 
OLS (10,000x10 allocation) 17.5% 16.4% 
Distribution match (lognormal) 19.7% 18.2% 
Distribution match (Gaussian) 20.8% 10.4% 
Distribution match (Pareto) 41.1% 25.5% 

 

With respect to either the RMS or average absolute error, the method of quantile regression combined with OLS gave the most 
accurate results overall for both tail measures. For the CTE(70) fits, the method of distribution matching – either Gaussian or 
lognormal – performed nearly as well, but the results were significantly worse for the CTE(90) fits, indicating a failure of these 
distributional assumptions further out in the tail of the distributions. The pure OLS fits performed moderately well under either 
scenario allocation considered, suggesting the increase in bias from using fewer inner scenarios was approximately made up for by 
the improvement from using more outer scenarios. The Pareto distribution fits were uniformly worse than all of the above. 
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Based on these results and the high quality of fit to the functional relationships shown in the univariate validations, combined with 
the general stability of the approach, we would recommend the quantile regression + OLS method as the primary technique for 
fitting to a CTE on the order of those considered here, between CTE(70) and CTE(90).  

For statistics further out in the tails (e.g., CTE(99) or CTE(99.5)), some care must be taken, since this method effectively discards 
all fitting data points whose estimated values are less than the relevant estimated quantile before passing them to the OLS 
regression. So, for example, for a fit to the CTE(99), after fitting to the 99th percentile we would exclude all but approximately 1% 
of the fitting points, reducing the number of points from 100,000 to something like 1,000 for the OLS fit. It seems likely that this 
would result in lower quality proxy fits and that the other methods (OLS and distribution matching) may perform relatively better.  

In any case, the addition of quantile regression to the suite of available tools provides much-needed flexibility for the task of fitting 
proxy functions for CTE. Either in combination with Ordinary Least Squares, as in our preferred approach, or on its own, quantile 
regression can give important information about the conditional behavior of tail risk measures with respect to underlying risk 
factors. These come at the cost of a different and more computationally difficult regression method, formulated as a linear 
program instead of a system of linear equations, which must be run separately for each desired quantile. Nevertheless, we expect 
this approach to be a key component of any proxy-fitting exercise involving projecting CTE or other tail risk measures in the future. 
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